
JOURNAL OFCOMPUTATIONALPHYSICS4,23o-249(l969) 

A New Method for the Numerical Solution 
of the Schrijdinger Equation 

R. GRIMM AND R. G. STORER 

The Flinders University of South Australia, Bedford Park, South Australia 

Received November 11, 1968 

ABSTRACT 

A new method for the numerical solution of the diffusion-type equation HI+~ = - a$/@ 
is presented for both infinite and bounded regions. When H is the Hamiltonian for a 
system of particles, a method closely related to the path integral technique is used to find 
an approximate form for the Green’s function of this equation for small 8. Iteration, 
using this Green’s function as an integral operator, gives the solution for any /X 
Alternatively, the eigenvalues and eigenvectors of the corresponding integral equation 
are directly related to those of the Schriidinger equation. The technique is illustrated by 
its application to several one-dimensional problems including the hydrogen atom. 

I. INTRODUCTION 

In general it is a difficult problem to obtain the solution to equations of the form, 

where H is a differential operator, satisfying certain boundary conditions, and /3 
is a real parameter. Except in a few special cases where an exact solution actually 
exists, one usually has to resort to some approximation; for instance, in quantum 
mechanics, an approximate solution to the Schrodinger equation can be found by 
an approximation to the wave function, as in the variational or W.K.B. methods, 
by a perturbation expansion of the Hamiltonian, H, or ultimately by a numerical 
calculation. 

There have been various attempts towards the solution of this class of problem, 
both formally by the development of a series solution for the corresponding opera- 
tor, e-*H, [ref. I, 21, and numerically by the integration of the original equation. 
In a recent paper, Goldberg and Schwartz [ref. 3,4] have given examples of the use 
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pence methods for the solution of (1. I>. Their results indicate that it is 
possible to select appropriate difference equations which ca 
Me results, when H depends on one variable only. They 
technique for extending the difference method to more spatia 
mating the operator, e-fiH. Baker et al, [ref. 51 have used strai 
integration to obtain the smallest eigenvalue 
three particles. Kales [ref. 6, 71 has evaluated 
to produce a bound state of a three-body pr 
equation obtained by using the exact Green’s 

equation His results involve a mu 
calculate Monte-Carlo techniques. 

In this er we propose a new scheme for the ~urne~ica~ ~ntegr~~io~ of E 
which has the advantage of an apparently simple exte~tio~ to systems w 
spatial variables. The method we have adopted involves the ~o~st~~~t~~~ of an 
approximate form for the Green’s function for Eq. (I. I), valid for small values of /3, 
and then the apphcation of an iterative procedure to obtain approximate s~~~t~~~~ 
at large /3. The solution involves the calculation of 
which result in greater numerical stability than t 
methods and in fact are valid in the very region the 
unstable. An important feature of the method is t 
of particles with hard cores and also cases where t 
illustrate the technique we have considered simple cases where an evaluation of the 
integrals numerical quadratures is possible. 

When operator His the Hamiltonian for a system of particles, and /3 is related 
to the temperature, the Green’s function becomes the s%atistic~ density matrix for 
the system, An evahtation of this density matrix in terms of path integral expres- 
sions leads to the same results and indicates the values of p for which the approxi- 

ation is valid, For large j3, the solution of (1.1) a~~roa~bes the ground state wave 
fimction of the system, while for small p it is possible to obtain an eig~~v~~~e 
equation for the calculation of higher states. In this paper we have ~~~~st~at~~ the 
method by a numerical computation of the ground state of the hy 
a calculation of some higher eigenvalues by expanding the a~~ro~mate form of the 
Green’s function in terms of a complete set of eige~f~.~~t~o~s. 

The theory is extended to bounded regions by obtaining an approximate form 
for the Green’s function in terms of solutions of the e tions which satisfy the 
boundary conditions separately. This procedure, which ears rather arbitrary at 
first sight, turns out to give the exact eigenfunetions for all /3 and an error i 
~~ge~v~~~es of H which is small for small p. 
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' II. GENERAL THEORY 

We consider the solution to Eq. (1.1) where the operator H can be written in the 
form, 

H = Ho + Hz, (2.1) 

where H,, , HI are differential operators with appropriate boundary conditions. 
We suppose that # satisfies the initial condition, written in coordinate representa- 
tion as 

$69 P = 0) = Ibow. (2.2) 

The solution to the operator equation (1.1) can be found in terms of the Green’s 
function, which must satisfy the equation 

HG(x, ,8 1 x0 , 0) z - aG(xy “ag “’ ’ ‘) , 

with the initial condition 

G(x, 0 [ x0, 0) = 8(x - x0). (2.4) 

From Eq. (2.3), G(x, ,D 1 x0, 0) is the coordinate representation of the operator 
exp (-+I?), i.e. 

G(x, P I x, > 0) = (x I c- I xo), (2.5) 

and the solution to eqn. (1.1) can be written as 

Rx, P) = $ (x I e-BH I x0> #o(xo) ho, (2.6) 

where we have restricted the boundary conditions so that the surface terms in 
Eq. (2.6) vanish. Thus the solution for all ,B can be found if the Green’s function 
can be formed. Usually this is a difficult, if not impossible problem, but we can 
obtain an approximation by expanding the exponential in Eq. (2.5). There are 
various ways in which this can be done, [I, 21, but it is important to select .an expan- 
sion which retains the symmetry properties of e-flH. To do this we use a theorem 
due to Zassenhaus [7], which is closely related to the Baker-Hausdorff formulae. 

Following Kumar [8], the “right-running” formula for the expansion of the 
exponential of the sum of two noncommuting operators can be written as 

where 

,-B/2@,i-H,, = e- &BH+- +‘&Q+%~-B~c, . , . (2.7) 

cz = - HHl, HOI, 
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and the coefficients of the terms of higher order in p consist of higher order 
mutator products of Ho and HI . Using a similar expression for the ‘~left~r~~ 
formula, we have that, 

e-f-o+rjr,) = e -S/2(H~+H1),-E12~,+H,, 

=e 
-+3x1,- :8H~e8+oze--B~o~ ~. . x -** e 

-r3%~e-i3%,e-@H, e-wi 

Hence, for small p, we have the approximation, 

gsa w e-*%poe-taHl + 2~3e---tBHle---ktB~o~3e-asHog;1SPZI + 

So that, to order f12, we can write 

(x / e-RH j x0} w j dx, j dx,(x j evtaH1 1 xl)(xl j evBHO j x,)(x, / e-*BH~ 1 x0) 

where (x ] e-BHo j x0) and (x j e-+BH1 1 x,,} are the Green’s functions for 
equations, 

and 

with appropriate boundary conditions. If it is possible to obtain expressions for 
these Green’s functions, the general solution to Eq. (1.1) can be written, for su 
ciently small j?, as 

$4~ B> = j dxo j dxl j dx2(x I eehsH1 I x1)(x1 1 emBHo \ x2>(x2 1 e-@lil / x0> &,(x& 
(22.13), 

TO obtain the solution for larger values of p, we note, from IQ. (2~5)~ the exact, 
relation for all N, 

==jd”uj-j dx~-~(x I e-*= I x1)(x1 1 e-BH / x2> 

--* <x~4 I e-8x I x0> ~dxo)~ (2.14) 

Thus the solution at larger values of fi can be obtained by choosing a s 
large N, such that /3’ = ,0/N is small enough to enable each term in the i 
(2.14) to be replaced by its approximate form Eq. (2.11). 
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For the purpose of numerical computation, the calculation of expression (2.13), 
a multi-dimensional integral, will in general be time-consuming, and in this paper, 
to illustrate the method, we have only considered cases where, in coordinate 
representation, H,, = I&(x, (a/ax)) and H1 = H,(x). 

Under these circumstances, using the orthogonality condition, (x j x’} = 
6(x - x’), equation (2.13) becomes, 

$(x, p) w j dx, e-*~-aHl(x)(x 1 e-fl=o 1 x0> e-+~=l(+J#o(Xo). (2.15) 

III. CONNECTION WITH STATISTICAL MECHANICS 

In statistical mechanics, equation (1.1) is the Bloch equation for the statistical 
density matrix, p(x, x0 , /3) of a system with Hamiltonian H and temperature T, 
related to the parameter j3 through /3 = l/kT, [IO]. If we rewrite the Hamiltonian 
as the sum of the free particle Hamiltonian, Ho, plus the contribution from the 
potential, V(x), we have from (2.14), 

p(x, x0 , N/l) = j ax, j *-* j dxAL1(x 1 e--a= 1 x1)(x1 1 cd= / XfJ * .* (XAq 1 e-a= 1 x0). 
(3.1) 

Using the approximation (2.1 l), for small ,f3 (i.e. large temperature) 

p(x, x0 , N/3) m j dx, -*. j dxNBl e-gsv(x)po(x, x1 , p) e-av(xl)po(xl , x2 , /3) 

. . . e -a v(x& P~(XN-~ , x0 , j3) e-tsv(xo), 

where po(x, x’, j$ is the free particle statistical density matrix 

(3.2) 

po(x, x’, /3) = (x 1 e-OH0 1 x’}. (3.3) 

Expression (3.2) for the density matrix can be obtained by an evaluation of the 
path integral formula for this quantity; in the notation of Feynman and Hibbs [9] 
this is 

p(x, x0, NP) = j exp 1 -s,” (Ho + V> dj Wf) (3.4) 

where the integral represents a sum over all possible paths, commencing at x0 , 
at the “time” 0, and finishing at x, at “time”, N@. As shown by Feynman, such a 
functional integral can be calculated as a limit, by breaking each path, x(t), into 
N piecewise straight paths, each of length B, and then taking the limit as N --+ co. A 



semi-classical result is achieved by taking sufficiently small /% If one expan 
integrals over the potential term using a trapezoidal rule, 
(3.2) has the resuhant form of an evaluation of (3.4)7 if on e 
the paths V[x(t)] does not differ too greatly from the mea 
where xi and xi+l are the coordinates of the end points. Su 
posed as the requirement that p be chosen sufficiently small, that 

where E ‘“lies between” xi and xi+1 . 
The iteration scheme suggested by Storer [IO, 911 for the evaluation of these path 

integral expressions, results in a density matrix appropriate to a system at a much 
lower temperature. Since the probability of a system being in a state other than 

ground state decreases exponentially with the temperature, it is seen from 
(2.14) that repeated application of the operator, (x / e-DE j x,,) to an a~bitrar~~ state 
frmction eventually produces the ground state wave function. 

IV. APPLICATIONS 

smallest eigenvalue of the operator H can be found by for 
following sequence of normalized functions, (bcN)> defined by the relations 

where 

Now if we expand the initial function &(x) in a complete set of ei~e~~~~~t~~~s of 
the operator H, 

(42) 

where 

IT@’ = E&@ and ai = $!I 0 x y ) I dx, 
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it can easily be seen that the sequence /\cN), defined by 

(4.3) 

has the limit, ACN) -+ e-BEo as N -+ co, where E,, is the smallest eigenvalue of H. In 
the same limit, the sequence $cN) approaches the corresponding eigenfunction 4(O). 

As an example we consider the hydrogen atom, which is not a trivial numerical 
problem (even though an exact analytic solution is available) because of the singular 
behaviour of the potential near the origin. The Hamiltonian operator for the relative 
motion of the system is 

H= - g + Y(x) 

in units where the unit of length is the Bohr radius, a, = k2/pe2 (p is reduced mass 
of the electron), and the unit of energy is that of the ground state E. = fiz/2,t.mo2. 
In these units V(x) = -2/J x j. Taking Ho = -a2Jax2, the Green’s function for 
(2.12) can be written as 

(x [ e-Rxo 1 x0) = 
(4$l)3’a exP{-6 - xo)“/4/3h 

Now equation (2.19, in spherical polar coordinates (I, 8, +), becomes 

x exp - 
[ I 

(r y-j2 1 _ exp I- -!??$.d?-/] ~-~~vh~@o(ro), (4.6) 

where @(r, /3) = r#(r, p)>, and the integration over the polar coordinates in Eq. 
(4.6) has been carried out because, since V = V(r), it is only necessary to consider 
#o as a function of r for the ground state. 

By repeated application of the approximate form for the operator e-BH in Eq. 
(4.6), and appropriate normalization at each stage, we form the sequence (4.1). 
In this way we obtain an approximation to the limit of A(N) (i.e. to E,) and to the 
corresponding ground state wave function. 

Numerically, the integrals can be evaluated using the trapezoidal rule, and the 
problem resembles the calculation of the largest eigenvalue of a matrix, whose 
elements tend to zero away from the diagonal, due to the limiting factors, 



NUMERICAL SOLUTION OF SCHRijDINGER’S EQ~AT~~~ 237 

exp(-(r - r3”/4/!9. Replacing the upper limit in the i~tegrat~ol~ by a finite values 
nd which the ground state wave function becomes negl 
using a square grid with n points, each separated by 

Eq. (4.6) becomes 

where ri = iA, 1 < i < n. 
lin evaluating Eq. (4.7) numerically a suitable value of ,f3 must be chosen. 

p must be chosen sufficiently small so that the ap~roximat~~~ (2.11) is vahd. 
According to Eq. (2.10) we would require /I3 j cS&, I Q 1, or a~ter~at~ve~y the less 
stringent condition (3.5) may be applied to give an order of estimate of /3 as 

On the other hand p must be chosen large enough so that, for a given se~a~ati~~ 
A, the exponential terms do not decrease too rapidly as r differs from rO . Taking 
A2 < 4,8 seems to give a sufficient sample of the integrand in Eq. (4.6). It shoul 
be noted that this condition is the opposite of the well-known con& 
stability of the explicit time integration using difference schemes CL?]. 
chooses the largest possible value of /3 in accordance with the condition (4 

n a value of A to sample the integrand sufficiently 
e taken values of /3 and A for which 1 Q 4pjA2 < 

In Fig. 1 we illustrate the convergence towards the ground state, start@ with 
the initial function, 

CD&) = 0.5 Q<r<5 
= 0 O<V<iO (4.9) 

The corresponding eigenvalues are given in Table 1. 
The apparently slow convergence to the ground state is a resuh of the choice of 

the initial function, and most of the calculations are concerne with producing the 
exponential behaviour of the tail for large Y. However, the coresponding ener,~ 
value (4.31, is given by the theory only to order j3, and fewer iterations are needed 
for its convergence than for the wavefunction (correct to 83. It is 
improve the estimate for the ground state energy value by using the wave fu~~t~~~ 
together with the variational calculation i.e. 
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where 
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Hpyx, Iv@) = -j dXN-1 + (x 1 e-f-f 1 X&l) qY~--lyx~--l, (N - 1)/Q. 

Using the explicit form for (x I e-*H [ xNWI) for the hydrogen atom, i.e. as used in 
Eq. (4.6), we have evaluated the new ground state energy values E,‘. These are 
given in the last column of Table 1. 

To take advantage of the faster convergence for larger values of p, the following 
procedure was adopted. Starting with a comparatively large value of /3, and a 

0.8 - 

0.2- 

0.1 - 

d--I-m N=O 
l .  .  .  .  .  .  .  .  .  N=lO 
-.-. N =40 
-- N -180 

EXACT 

r (Bohr radii) 

FIG. 1. Illustrating the convergence to the ground state for the hydrogen atom, using the 
initial approximation given in Eq. (4.9). p = 0.02, n = 100, Ll = 0.1. 



TABLE 1 

CALCULATION OF THE GROUND STATE ENERGY OF THE HYDROGEN ATOM 
USING EQ. (4.13) AND EQ. (4.10) WITH fi = 0.02 AND d = 8.1 

No. of iterations Eigenvalue 

10 -0.8209 
4Q - 0.9494 

loo -0.9912 
150 -0.9958 
175 -0.9963 
180 -CA9965 

Exact - I .oooo 

- 
-0.8269 
4.9536 
A3.9959 
-’ 1.0008 
- 1.001.5 
- 1.0015 
- I .oooo 

corresponding large A (small n) we iterated until successive energy values di 
less than 0.01%. The new approximation to the und state wave f~n~t~o~ 

was then transferred as the initial trial function to a 
points by defining the values at the new grid points by i 

y 4 ensured the same value for A2/4P and hence simil 
nential factors. The results of these calculations, includi 
values at each stage, and the number of iterations required on each grid for conver- 

listed in Table 2. It is to be noticed that the effect of ~r~sfer~i~g to a 
is most apparent for small values of V, where the new grid sa 
the potential better. The values of the W~vefun~tiQ~s at varl0us 

points are listed in Table 3. 
The calculations were performed in this way to remonstrate the r 

TABLE 2 

To SHOW THE RAPID INCREASE IN RATE OF CONVERGENCE BY 
USING A LARGE STARTING VALUE OF j3 

Grid size etc. Eigenvalue 

1 n = 10, A = 1.0, j3 = 2.0 -Ah9126 3 
2 YE = 20, A = 0.5, /3 = 0.5 5 
3 n = 40, A = 0.25, p = 0.125, 3 
4 n = 80, A = 0.125, /3 = 0.03125, -CM954 2 
5 IZ = 160, A = 0.0625, fl = 0.0078125, AI.9978 5 
6 n = 320, A = 0.03125, /3 = 0.001953125, -0.9983 1 
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TABLE 3 

VALUES OF THE WAVEFUNCIION FOR THE VARIOUS GRIDS SHOWN m TABLE 2 0 

r 1 
- 

1 0.81263 0.68083 0.72362 0.72457 
2 0.44898 0.54122 0.54409 0.54614 
3 0.30296 0.31045 0.31078 0.31027 
4 0.18330 0.15725 0.15778 0.15741 
5 0.09821 0.07569 0.07502 0.07489 
6 0.04837 0.03556 0.03451 0.03438 
7 0.02293 0.01650 0.01562 0.01549 
8 0.01079 0.00754 0.00697 OOO688 
9 0.00505 Q.00330 0.00296 0.00288 

10 0.0023 I 0.00124 0.00082 0.00057 

2 3 4 5 6 Exact 

0.72603 0.73551 0.73575 
0.54605 0.54154 0.54134 
0.30992 0.29908 0.29872 
0.15712 0.14683 0.14652 
0.07475 0.06758 0.06738 
0.03429 0.02985 0.02975 
0.01543 0.01278 0.01278 
0.00684 0.00526 0.00537 
0.00284 0.00190 0.00222 
0.00033 0.00009 0.00091 

a For grid 6 the iteration was continued until the wavefunction remained constant to within 
0.001 %. 

convergence in energy values after only a small amount of computing time (about 5 
minutes on IBM 1130). To obtain more accurate values for the energy, we can 
apply Eq. (4.10) to a more accurate wave function obtained by iterating several 
more times, or alternatively, by further reducing the value of /3, and decreasing the 
size of the grid. Eventually, in the latter case, one would expect the behaviour of 
the Coulomb potential near Y = 0 to begin to affect the results, thus providing some 
limit on the attainable accuracy. Alternatively one could use a Coulomb potential 
which is cut off at a small value of r and estimate the error that this procedure 
generates. 

(b) The larger eigenvalues of H can be found from the solution of an eigenvalue 
equation obtained from Eq. (2.6) by expanding #(x, ,8) and &,(x0) in a complete set 
of eigenfunctions of H. Using Eq. (4.2) and 

(4.11) 

Eq. (2.6) becomes 

e-EEi#cn(x) = J (x 1 ewBH I x0> #“)(x0) dx, , (4.12) 

i.e. an integral equation for Ed and z,@)(x). 
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For example, the s state energy values of the hydro 
solution of the equation 

~urne~ca~~y this can be achieved by fist expanding p and #I(~) in ortho 
polynomials @&), where 

Writing 

and 

Eq. (4.13) becomes, 

The energy values can now be obtained by finding the eigeenvalues of the 
A . Obviously the closer the polynomials CD&-) are chosen to tbe actual 
wiyefunctions for the hydrogen atom, the nearer this matrix is to being diagonal, 

ne can test this method by taking the actual s state ~avefun~tio~s~ 

q,(r) = (2)“‘” 4& e-TinL,l (4.17) 

where the Lt are the associated Laguerre polynomials; then the ener values are 
given by 
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Using the approximation (4.14) for small /I, and evaluating the integrals numerically 
by Simpson’s rule, we can calculate the higher energy values if we replace the upper 
limits of the integrals in Eq. (4.18) by finite values, chosen so that the corresponding 
polynomials are normalized to a sufficient accuracy according to Eq. (4.15). 

Using an approximation for p(r, r,, , p) produces errors in all the elements of the 
matrix A,, , and the energy values calculated from the diagonal elements only will 
be inaccurate unless very small values of p are used. As before, such a requirement 
places a restriction on the choice of the grid spacing (0) needed for the evaluation 
of (4.18), because of the sharply peaked Gaussian expressions in (4.14). The situa- 
tion is further complicated by the singular behaviour of the potential near the origin, 
particularly in the case of the ground state, where the wavefunction is large exactly 
where the approximation for p(r, v. , ,6) is likely to be bad. 

If however, we choose /3 and A to satisfy simultaneously the conditions, 

we will be in a region where the approximation for p(r, v. , /3) is good and also 
where the integrand in (4.18) is sampled sufficiently. By successively reducing the 
value of /3 and selecting a suitable value of A, it is possible to find acceptable results 
which are equally as good as those found using the best difference techniques. 

In Table 4 we illustrate the effect of reducing the value of /l/A (for fixed A2/+?) on 
the calculated values for the ground state of the hydrogen atom, while in Table 5 
we have listed values obtained for the first four exicited s states. 

The method is not limited to s states since we can expand the kernel, 
{x 1 e-aH j x0), of Eq. (4.12) in terms of Legendre polynomials, i.e. if 

(x 1 e-BH 1 x0) = f (2f4; I) p&, P-0 ) /!3) P,(cos 8) 
z=o 

(4.19) 

TABLE 4 

GROUND STATE ENERGY VALUES FOR FIXED A2/4/3 AND 
VARYTNG /3/A OBTAINED BY THE METHODS OF §IVQJ)~ 

B A BP 

0.5 0.25 2.0 
0.125 0.125 1.0 
0.03125 0.0625 0.5 
0.0089125 0.03125 0.25 
0.005 0.025 Q.2 
0.0032 0.02 0.16 
0.00245 0.0175 0.14 

Q The integrals were cut off at 20 Bohr radii. 

AZ/48 EO 

0.03125 - 1.22357 
0.03125 -1.04512 
0.03125 - 1 XI0767 
0.03125 -1.00118 
0.03125 - 1 JO064 
0.03125 - 1.00035 
0.03125 - 1.00025 
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THE FIRST FOUR EXCITED s STATES OF TEE HYDROGEN A~oivP 

B A PIA AZ/@ Energy value Exact energy waluc 

El 0.00125 0.01 0.125 0.52 -0.250004 -0.2500cKl 
& 0.085 0.02 0.25 0.02 -0.111136 -0.111111 
& 0.01325 0.03 0.315 0.02 -0.062532 -0.062500 
E4 0.02 0.04 0.5 0.02 -O.O40036 - 0.04O~Q 

* The integrals were cut off at 30, 60, 90, 120 Bohr radii respectively. 

where cos % = (jh . f,), then the higher angular states can be o 
of the equation (cf. Eq. (4.13)) 

e-aEqJzyr> = j pa(r, r. ) p> +f”‘(ro> r,” dr, , 

where for small /3, [IO], we approximate p1 by 

pl(r, r. , /ii) M (477$9-+ e-T ‘avcr) exp(-(9 + r,*)/4/3) ~-z~~~j~~~/2~) e-*sv(ro~. (4.21) 

and j, is the spherical Bessel function. 

V. BOUNDED REGIONS 

In contrast to the previous sections where we considered infinite or semi-i~~n~te 
regions, in this section we consider a simple one-dimensional parabolic equation 
of the type (1.1), where H = (P/ax’) + V(x), with the two boundary conditions 
q!(x) = 0 when x < 0 and also when x 3 a. The general solution for this case can 
be found in terms of the Green’s function satisfying the equation, 

with the initial condition, G(x, ,8 1 x0, 0) = 6(x - x0) when ,kI = 0, an the 
undary conditions G(x, /3 ( X, , 0) = 0 when x or x,, = 0 and when x or x0 = a. 
cause of the symmetry which exists in the initial and boundary ~o~d~tio~s be~weer~ 

h: and x0 , we could have written this equations as 

with the same initial and boundary conditions. 
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The fact that G must satisfy the boundary conditions at x, x,, = 0 and x, x,, = a 
simultaneously is an awkward one for the application of our method because there 
exists no closed form for the corresponding equation with Y = 0. However, this 
difficulty can be eliminated, for we can show that we sacrifice no accuracy (at least 
as far as the eigenfunctions of H are concerned) if we satisfy each boundary condi- 
tion separately, and define a new Green’s function which is a composite of two 
functions, one satisfying the boundary conditions at x or x,, = 0 and the other 
satisfying the boundary conditions at x or X, = a. Let us call G,(x, p / x,, , 0) the 
function which satisfies equation (5.1) with Gr = 0 at x or x0 = 0, and 
G,(x, /I ) x,, , 0) the function which satisfies equation (5.2) with G, = 0 at x or 
x,, = a. If we now divide the square region 0 < x, x0 < a into two parts by the 
line x + x0 = a, we can define a composite Green’s function G(x, p j x0 , 0) by 

and 

@, P I xo , 0) = Gdx, P I xo , 0) 

z;‘b, B I xo 3 0) = Gdx, B I xo 90) 

for 0 < x + x0 < a 

(5.3) 

for a < x + x0 < 2a. 

The important feature of this definition is that G(x, /3 j x0, 0), regarded as the 
kernel of an integral equation, has the same eigenfunctions as the operator H or the 
kernel G(x, j3 1 x0, 0) provided that V(X) satisfies the symmetry condition V(x) = 
V(a - x). To show this, consider 

where z/&(x0) is an eigenfunction of H, with the corresponding eigenvalue En. 
Now 

a-0 = s [ 0 
- A + W] G,(x, P I xo 70) ~&a> dxo ax2 

+ -&- -Wdx, B I a - x, 0) - G,(x, B I a - x, 011 A@ - 41 
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re 
(5.1) and (5.2), and integrating by parts, we can easily show that t 

Thus, provided G& p I x0 , 0) and G&C, fi \ x0 , 0) are continuous across the hne 
x + x0 = a and the function [G,(x, p 1 x0, 0) - G,(x, fi j x0, O)] is a $y~~~t~~~ 
function of x and x0 when x + x0 = a (V(X) = V(a - X) is a sufhcient co~d~~~~~ 
for this to be true), In(x) is an (unnormalized) e~genf~~ct~~~ of the operator 
with eigenvalue E, , i.e. 

However, the eigenvalues, & , of the kernel G(x, ,6 j x0 ) ) are not the same as 
those of the kernel G(x, p ) x0 , 0). 

We have shown therefore that the exact eigenfunctions of the operator with 
two boundary conditions, can be found by looking for the e~ge~fu~ctio~ f the 
kernel e(x, j3 j x0, 0), which is defined as the composite of two functions w~~~b. 
satisfy the boundary conditions separately. Once the eige~fu~ction~ are Kiowa the 
eigenvalues can be obtained readily by variational or other techniques, 

In order to use this analysis to calculate the solution to (1.1) in a bounded one 
dimensional region, we make the approximation, as 

G(x, /3 j x0 , 0) w e-aVtz)‘2Gto)(x, p 1 x0 ) Q) e--O ‘Wi2 

for sufficiently small /3. H:re 6(*)(x, /3 ! x0 ) 0) is the solution of 

(5Aj 

$g (x, p / x0 ) 0) = $y- (x, p I x0 ? 0) (57) 

with G(OJ(x, j3 / x, , 0) = 0 at both x or x0 = a, and G(@(x, j3 j x0 i 
when /3 = 0. We could express G(O’(x, j3 j x0 ) ) as its eigenfunction expansion, 

G(O)(x, p / x0 , 0) = (5.Q 
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but it is essential to our iteration method to obtain a closed form for this expression, 
at least for small j3. 

Now, 

G$)(x /? 1 x , 09 0) = 
(4&2 kxp(-(x - x012/4P) - exp(-(x + x~)~/~P)) (5.9) 

satisfies (5.7) with the correct boundary conditions at only x = 0 and x0 = 0, and 

@b, P I xo , 0) = (4nb)1,2 {exP(-(x - XO)~/‘@) - exp(-(x i- ~0 - 2~)~/4>} 
(5.10) 

satisfies equation (5.7) with the correct boundary conditions only at x = a and 
x0 = 0. Moreover (5.9) and (5.10) are continuous across the line x + x0 = a, and 
the function [GiO’(x, /3 / x0 , 0) - G.j”(x, p I x0, 0)] is symmetric in x and x0 
throughout the region 0 < x, x0 < a. By the preceding arguments the composite 
Green’s function, 

~o:,(x, P I x0 , 0) = 
&“)(x, P I xo 70) for 0 < x + x0 < a 
Gp’(x, B I x0 , 0) for a < x + x0 < 2a 

(5.11) 

has the same eigenfunctions as G(O)(x, ,8 [ x0 , 0), and a direct calculation of the 
corresponding eigenvalue &!j”, gives 

,-CO) czz &%nrr/aP 72 1 
Y2 nn erf(y) + e_ s yhr 0 

ex214Y2 sin x dx 
I 

(5.12) 

where y2 = a2/4P and erf ( y) is the error function. Thus replacing G(O)(x, p / x0 , 0) 
by e(O)@, p ) x0, 0) involves an error in the eigenvalue of O(e-ya), which is very 
small when p < a2, and no error at all in the eigenfunction. Using this replacement 
in equation (5.6), we obtain the following expression for the Green’s function of 
equation (5.1) 

G(x, /3 1 x0, 0) RS e-aV(m)‘2#0)(x, j3 / x0, 0) e-avclco)‘2, (5.13) 

which is accurate provided ,L3 is small enough, so that the higher order terms in 
Eq. (2.10) can be neglected. In general this would be a stronger requirement than 
p <a2. 

To illustrate these ideas we consider the effect on the energy values and the wave- 
functions of a particle in a one-dimensional infinite well of width, a, caused by the 
presence of a repulsive barrier, 

V(x) = v, a/4 < x 6 3a/4 

0 0 < x < a/4 and 3a]4 < x < a 

1-03 x < 0 and x > a. (5.14) 



The eigenvalues and eigenfunctions of the ~orres~~ndi~~ 
can now be obtained using Eq. (4.12) in the form, 

where the Green’s function p(x, x’, ,O> is to be found from Eqs. (%I?), ( 
(5.10), and (5.9). 

PSumerical estimates for the lowest N eigenfunctions and eigenvalues of L 
homogenous integral equation can be obtained by approximating the integral 
an N point quadrature rule, thus replacing the egral equation by a set of N 
simultaneous equations in N unknowns [13,14]. ding [Q, al into M + 1 equal 
intervals, each of length d = a/(N + I), Eq. (5.15) becomes, 

where 

and 

xi = iA, i = 1, I&..., IV. 

The eigenvalues and eigenvectors of the matrix pij now furnish us with a 
mations to the lowest N eigenvalues and eigenfunctions of the operator p 
approximations improve as N is made larger. 

For the simple one-dimensional problem we have chosen, we approximates t 
integrals by a trapezoidal rule with 50 grid points, thus obtaining values for I 
lowest 50 eigenvalues and eigenfunctions. Using a = 2~, V, = 2.5, we list in 
Table 4 the results for the first ten energy values (ES), calculated from the eigen- 
values of pij , together with the exact results evaluated from the original ~~b~~~~~g~~ 
equation It is expected that the last few eigenvalues would not be too accurate 
because the region is not sampled sufficiently for their determination. This is not 
serious difficulty, however, as seen from the results in Table 6 for the thirtieth an 
fourtieth eigenvalues (E,, , I&,). As in the previous calculations in this paper, it 
should be realized that j3 must be chosen carefully because of its association with 
the grid spacing, A. In general this means that if more accurate results are required, 
the reduction in the size of p must be accompanied an increase in N to imsure 
that the quadrature rule still samples the integrand s ciently. 
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TABLE 6 

ENERGY VALUES OF A PARTICLE IN A POTENTIAL WELL (DEFINED BY EQ. (5.14)) 
FOR DIFFERENT VALUJZS OF 8; N = 49; a = 27r, V, = 2.5 

B 0.05 0.01 0.0075 Exact 

EO 1.7573 1.7609 1.7910 1.7624 
‘% 1.8898 1.8936 1.8937 1.8955 
J% 3.6133 3.6133 3.6133 3.6136 
E3 5.5037 5.5045 5.5045 5.5029 
4 7.6713 7.6749 7.6750 7.6733 
E5 10.206 10.210 10.210 10.212 
ES 13.431 13.432 13,432 13.435 
-5 17.323 17.323 17.323 17.321 
ES 21.600 21.603 21.603 21.599 
ES 26.229 26.233 26.233 26.235 
E29 226.24 226.24 226.17 226.25 
-%8 390.62 400.59 398.16 401.25 

VI. DISCUSSION 

Even though we have emphasized the quantum mechanical applications of this 
method it could be applied equally well to the numerical solution of diffusion 
problems, e.g. Fig. 1 privides a picture of the time development of the radial distri- 
bution of particles diffusing via Brownian motion in a Coulomb potential. 

The method offers several advantages over the standard technique of replacing 
the basic differential equation by a difference equation. The error made in the repla- 
cement of the operator e-~cl-r,+v) by e-fljzve-flHoe-~/2v depends only on the value of p 
and the magnitude of the derivatives of V; it is independent of any grid size. The 
“free-particle” problem is essentially solved by the explicit expression for e-fiHo 
whereas the relation between the “time” step /3 and the grid size d for difference 
schemes must be maintained (LP > p) and both d and /3 must be small even with no 
potential present. The replacement of the differential equation by an integral equa- 
tion seems to have eliminated any problem of stability and moreover the expression 
in terms of an integral equation leaves open the possibility of using methods, (e.g. as 
in $IV(a) and §V) other than integration by quadratures. A modification of this 
method using Monte-Carlo integration techniques is being developed by the authors 
and promises to give good results for problems involving many particles. 

We have considered cases where the operator H is of the form H = 
-(@/8xa) + H1 . Convergence can be improved if we absorb into H, as much of 
the variation in HI as possible; this will enable a larger value of j3 to be chosen. 
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s requires an explicit form for (x \ e-BHo \ a,). 
for which this can be done: For 

(Y / eesao 1 rob) = 47rrr,(45~/3)-~/~ exp[-(r* + ro2)/4/3] Pzjz(rro i/2& (6.2) 

I-& = - +$- + w2x2(harmonic oscillator), 

(x j eesHa 1 x0) = [2v sinh(2w/3)/w]-3’z 
x exp(-(w/2) coth(2w/3)(x2 + x,,“) + w c~sec~(2~~~x . x3; ( 

and for 
a2 a a = --- 

ax2 iB x---Y-- t 2Y ax ) f By8 + Y2)/4 

(particle in a magnetic field Be), 69 

These expressions may be quite useful where the remaining 
is quite small. 
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